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Abstract

Reconstructing boundaries along material interfafresn volume fractions is a difficult problem, esiadly

because the under-resolved nature of the input ddiiaws for many correct interpretations.

Worse,

algorithms widely accepted as appropriate for siatioh are inappropriate for visualization. In thigaper,
we describe a new algorithm that is specificallfeided for reconstructing material interfaces for
visualization and analysis requirements. The athon performs well with respect to memory footpentl
execution time, has desirable properties in variaosuracy metrics, and also produces smooth susfagth
few artifacts, even when faced with more than tatenels per cell.

Categories and Subject Descriptors: 1.3.6 [Comp@taphics] Methodology and Technologies

1 Introduction

Many important classes of computer simulations of

physical phenomena require support for “materialg’
discrete regions of space with different physicalperties.
For example, a simulation of tidal waves needsatdion
space into water and air, and a simulation of anraabile
accident must model glass, metal, and rubber. €eThee
two approaches to supporting materials on a cortiputd
mesh: Lagrangian (where each cell contains examtly
material for the entire simulation) and Euleriarhére the
materials are allowed to flow through the mesh)thdugh

the Lagrangian approach is simpler to implemeng th

Eulerian approach is often used because of itsbfléy.

The Eulerian approach is ideal for computationsiiratg a
static mesh while materials move, for materials #hend
and twist so significantly that they can't be regaeted

easily with normal mesh elements, or simply to nhode

materials at a higher resolution than the mesh amtain
accuracy. The result is that cells in the compartal mesh
will be “mixed,” i.e. containing two or more matais.
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Figure 1: Original problem materials (left) and the volume

fractions of the blue material in each cell (right)

Material information is stored on a per-cell basigh a
scalar for each material representing the “voluraetfon”
(VF) for that material, i.e. the percent of thel aglcupied

by that material. Figure 1 shows an example of ehre

materials in two-dimensional space along with aergell
computational grid, as well as the VFs in each fllthe

upper-most (blue) material. In this example, therfcells
with a blue VF of 1.0 are “clean,” containing orthe blue
material, and the three cells with a VF betweemd® h are
mixed and should contain the interface of the Iphagerial.

There are multiple “correct” solutions and manytesia
for a good reconstruction: Does it honor the volume
fractions? Does it place materials from neighbpraells
next to each other? Does it create large discoitigs?
Although simulations reconstruct interfaces themes|
their primary concerns include advecting materiateugh
the mesh correctly or specific physical propertlde
conservation of mass, not visualization and analydiheir
reconstructions often lead to inaccurate analysis poor
aesthetics. In this paper, we introduce a new #fgorthat
is well suited for visualization and analysis.

The rest of the paper is organized as followssdction 2,
we describe previous work in this area. Sectiatescribes
our new approach and variations therein. In secfipwe
perform a comparative evaluation with several otlypes
of interface reconstruction techniques, and wegirepaths
for future work and our conclusions in section 5.

2 Previous work

One of the first techniques for material
particles to define the interface [Ams66]. Lateethods
tracked interfaces using level set methods [OS88].early
method for creating linear geometric material baarras
out of volume fractions arose in the simple linéeiface
calculation (SLIC) [NW76] and volume-of-fluid (VOF)
method [HN81]. SLIC and VOF are piecewise-
constant/stair-stepped  algorithms,  aligning
interface boundaries with one of the major cooriraxes.
An improvement to these approaches came in thepwise
linear interface calculation (PLIC) [PY92], whiclwops
over the materials in each cell, first choosingoaentation
then finding the intersection position which resut the

interface
reconstruction (MIR) is a method that uses tracking

malteria
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correct VF. By supporting non-axis aligned orig¢iotas,
PLIC removed one of the major obstacles to a meabistic
reconstruction. Modifications to the basic PLI@a@ithm
include the ordering of materials and method fdcwdating
interface orientations [AS07]. Again, these methade
largely concerned with not merely the reconstrurctié the
material interfaces but also the roles these iatexs play in
simulation codes, such as tracking and propagatireg
surface following physical laws, and thus often leeg
features important for visualization and analysis.

we study the reconstruction on the central ced ofne-cell
grid with three materials: blue, red, and yellowWhe first
step, seen in Figure 2, demonstrates the averatgpg

Our algorithm deals with multiple materials in dl dgy
adding each material one at a time. Each celliti@iized
with a single material, then, when adding each esgive
material, it splits out portions of the cell to beg to the
new material. Figure 3 shows the first iteration this
process. The center cell has been initializedetoydllow
and we demonstrate how a second material (redjdeca

Other algorithms have been devised which are moreThis is done in two steps: evaluation and reconstm.

applicable for analysis and visualization. Oneodtgm
implemented in visualization programs is an isceuef
algorithm, which creates surfaces based on intatpdl
volume fraction values, either on re-centered \&leon a
dual mesh. [RBW99]
surfaces, but has serious flaws in supporting plelti
materials. Bonnell et al. describe an approachchvhi
remaps geometry into barycentric coordinate spaegling

For the evaluation step, we focus on the two setect
materials (red and yellow) and ignore all other enats
(blue). For each edge in the cell, we test toistere is a
location along the edge where the interpolated bFthe

This approach generates smoothmaterials are equal. In our example, the red artbwe

materials’ interpolated VFs are equal near theofojhe left
edge, where both have a value of approximately@.@6d
near the middle of the bottom edge, where both rave

to more accurate reconstructions for more than two value of approximately 0.336.

materials [BJH*00]. However, when faced with adufitl
materials, the output has a high geometric comylexd
the algorithm only applies to triangle/tetrahedyatls. The
algorithm described by [AGD*08] subdivides celldara
discretized grid and iteratively shifts materiabstoxels to
minimize an energy function, generating good rasufith
fixed error bounds. However, the subdivision ipensive
in output complexity and performance time. Furthee
output is restricted to generating axis-aligned riatzaury
surfaces.
described as multi-material

many constraints, such as requiring material ctsotoebe
made at each corner, or supporting intersectiorg an
edge midpoints. Finally, the algorithm describedthis
paper represents a significant extension to antiysineof
the algorithm described in [Mer04], in particulatding an
iterative step to
comparing its effectiveness to other algorithms.

3 Algorithm description

3.1 Core algorithm

1.0 1.0 1.0 | |
00 | 00 | 00

v 00Ny 87 67
107N 057N 02 N
00| 03| o8 | |

N 02Ny 42 a7
027N0.0/N00 R
00 | 03| 10

Figure 2: Volume fractions for each material (left) are
averaged to the vertices of the mesh (right).

The algorithm begins by averaging the material W-the
mesh vertices. This ultimately enables contingityce the
algorithm depends on volume fractions along celyjesd

and each edge will now have the same starting salue

regardless of which adjacent cell we are reconsirgic We
illustrate each step of our algorithm with an extemphere
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Another category of approaches could be
marching cubes variants
[WS03, BL03, HSS*97], but these approaches add too
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Figure 3: Intersection points for red/yellow evaluation
(left) and the clipped volumes (right).

If an edge contains an intersection point, we $pig edge
into two new edges: yellow (for the new edge innidi®
the yellow-dominant vertex) and red (for the newged
incident to the red-dominant vertex). After thgedplits,
we perform the actual reconstruction. In two disiens,

improve accuracy and an analysisthe output is made up of polygons, each contaiais@gle

material (red or yellow). The vertices of a yelltriangle,
for example, will consist of only yellow-dominanertices

or intersection points. We have implemented twoavés,
one of which operates only on triangles and reguite
input to be triangulated, and one which can inmat eutput
both triangles and quadrilaterals. The rules for
reconstruction are table-based and resemble a March
cubes table for isosurfacing [LC87]. Further, when
considering only two materials (as we have so thg
resemblance to isosurfacing extends to the entaithm.
This includes ambiguities that may arise for casbgre
dominant nodes are diagonal from each other (ed- r
dominant upper left and lower right, yellow-domibapper
right and lower left). We handle these ambiguitlss
choosing one material to span the middle and therdb
get separated, again much like an isosurface ahgori

3.1.1 Three dimensional extension

Our three dimensional case is similarly done byetab
although we have again implemented two variants.thée
first variant, we must tetrahedralize the input aheén
group output vertices of the same material togethleng
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with neighboring intersection points, into one oorm
tetrahedrons. In the second variant, we leavénihat cells
whole and strive to reduce the number of outpuls dey
grouping tetrahedrons together into pyramids, wedgad
hexahedrons when possible. We refer to this aszbe”
variant since it uses the elements of the finiemeint zoo.
Once again like a Marching Cubes algorithm, we have
worked out all2" cases for each-node primitive so that a
simple table lookup determines the output shapegdch
reconstruction step. To illustrate the differebeéween the
tetrahedron and “zoo” variants, consider the cafea o
hexahedron that has four yellow dominant nodegsiriap
half and four red dominant nodes in its bottom .hathe
tetrahedral variant would need ten or more tetredresito
represent the reconstruction, while the zoo varnanild do

it with two hexahedrons. This fact has implicasofor
surface smoothness we explore later. Note thaethr
dimensional reconstruction introduces a new problam
the faces of the original cell are being dividetbitriangles
and quadrilaterals, it is important that the neigirig cell
makes matching decisions regarding how it divides t
same face. Otherwise, the connectivity of the autpesh
will be incorrect. This potential problem is pretesh
through careful selection of the table entries,wadl as
some consistent indexing.

3.1.2 Isosurfaces and Equisurfaces

For a two-material problem, the boundary between th
reconstructed materials is indeed an isosurfacalofe 0.5.
However, this boundary is not technically an isteste.
An isosurface is a surface of constant value. $buface is
rather a surface where the volume fractions of hvederials
are equal. When there are more than two mateitiads,
value along the boundary will vary. Figure 3 destosies
this, as the boundary has interpolated VFs randjiom
0.087 to 0.336. In recognition of this key diffecerfrom an
isosurface, we refer to this surface as an “eqtfasa.”

3.1.3 Reincorporation of Additional Materials
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Figure 4: Evaluating the third (blue) material against the
first (yellow) and second (red) materials

At this stage, we now have two output cells, orreefach
material visited. We take each of these cells araduate it
against the next material (the blue one) as seéiigure 4.
To do so, note that we must have values at all sifatethe
blue material as well, and as such must also iotetp VF
values for our blue material to the new node |loreti This
is where the process repeats: we clip our yellolvfoam
the previous step into a blue and a yellow celt dre red
cell into a blue and a red cell. As mentioned, \sgehtwo
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variants of this clipping process: one which ousptwo
triangles for the red material in Figure 4, for exde, and
the other which outputs a single quadrilateral.

Note that by construction, the edges of these tewo Ilue
material cells must meet each other at the exactesa
points. This same phenomenon occurs at edges éetwe
cells, and for this reason this algorithm guaramtee
continuity for all material interfaces. The resulif the
reconstruction are shown in Figure 5. Note thimathm is
applicable to any cell type, although we dependadable
that covers th@" intersection cases (wheneis the number
of points in the cell).

1l
[l

1
Figure 5: The final reconstruction for all three materials.

3.2 Global iteration scheme

As described in section 3.1, our algorithm makes ofs
volume fractions only implicitly, using them not ashard
criterion, but as input to a process which usesnttes
values to define geometric clipping planes. Howetleere
is still a direct correlation between the two: oample, a
larger input volume fraction of a material will tésin the
generated volume for that material being largere Wl
explore the actual correspondence between inpubatmlit
volume fractions in Section 4, but we will note &nsimply
that the relationship is not necessarily a triviaéar one:
as can even be seen in the example three-mataghts
above, there are many circumstances in which et iand
output VFs are not an exact match.

However, we can use this proportionality betweegputn
and output volume fractions to improve our scheriée
process we use is one of a global iterative maatific of
the VFs used as input to the reconstruction. $ipalty:

1. Initialize the reconstruction algorithm VF inputlyas to
the desired VFs (i.e. the VFs from the originakdsdt).

2. Perform the reconstruction using the current ingks.
3. Calculate the output VFs achieved by the reconttrc

4.For each material in each cell, modify the input B¢
some percentage of the difference between theedkesir
VF and the achieved output VF.

5. Repeat steps #2, #3, and #4 until iteration stops.

For example, suppose our data has a VF of 0.2 rabter
and 0.8 material B in some cell, but we achieveahd 0.9,
respectively, after our first reconstruction. Wigh40%
percentage used in step 4, we will modify thesgeta¥Fs
to be 0.24 and 0.76 and begin the next iteration.

Note that because modified VF values are averaged f
cells to nodes during the iteration, modificatidane cell
will affect neighboring cells. Therefore, thisrist a local
adjustment and it prevents a simple analytic soiuiih each
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PLIC Discrete Isovolume-Z Equi-T Equi-Z Equi-Zfisdive
4.1 Mesh Type Support all rectilinear only all all all all
4.2 Geometric Connectivity no yes (axis-aligned) no yes yes yes
4.3 Multi Material Support yes (sensitive) yes no yes yes yes
4.4 Smooth, Low-Artifact Outpu no no yes partial esy yes
4.5 Volume Accuracy yes (exact) yes (bounded) no no no yes (not guaranteed)
4.6 Surface Accuracy no no yes yes yes yes
4.7 Memory Complexity moderate poor excellen nmate excellent excellent
4.8 Runtime Performance poor poor moderate extelle excellent moderate

Table 1: Summary of comparative evaluation of reconstrucétgorithms.

cell, also removing guarantees of convergence. dvew
this global aspect is necessary; without this cotioe
between cells, connectivity and smoothness woulld$te

In Step #4, the percentage of the VF differencel use
modify the target VFs can be thought of as a dagpin
factor: a larger value will approach the desired Wfues
more quickly, but as such can result in oscillaievhich
prevent convergence at all. We have found emjtlyitiaat
values between 10% and 40% generally approactatgett
VFs quickly while avoiding oscillations.  Also, as
convergence is not guaranteed, the scheme is nseétlu
with the number of iterations specified manuallyVe
investigate these convergence properties in Sedtia.

4  Evaluation

In this section, we compare our algorithm agairtsieo
algorithms, both visualization- and simulation-otid.
Each of the algorithms is implemented inside theltVi
visualization and analysis application [CBB*05],damwe
use these implementations for our comparisons. s&he
include a piecewise-linear interface constructitdL{C")
algorithm, an implementation of the algorithm from
Anderson et al. [AGD*08] (“Discrete”), and a volutrie
variant of an isosurface algorithm (“Isovolume”for our
technique which clips cells based on equi-surfaces,
show results using both reconstruction variant® osing
the pure triangular/tetrahedral approach (“Equi-&f)d one
using a the more complete selection of cell typemfthe
finite element zoo (“Equi-Z”). The latter variarare utilize
our global iteration scheme with a fixed number of
iterations (e.g. “Equi-Z/i5” for five iterations).Table 1
summarizes the results of the comparative evaloatid/e
explore these results in detail below in light &fualization
and analysis requirements, including overall cdjigs
(4.1-4.4), accuracy (4.5-4.6), and performance-{48j.

4.1 Mesh type support

All algorithms compared here work in both two- and
three-dimensions.  Furthermore, all work with regul
structured, or unstructured data sets, with theegtan of
the Discrete algorithm, which is limited to regulgnids.
We use all types of data sets below, using a twoged
approach to evaluate these algorithms: use welhef
synthetic test data to examine critical algorithrigatures
on a small scale, and larger simulation data tduat@ the
methods in a real-world setting.

4.2 Geometric connectivity

For many geometric algorithms, good cell connettiis
required — this is why unstructured meshes arergén@ot
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sets of independent cells, but instead use datetgtes that
share points among neighboring cells. Visualizataom

analysis examples requiring good connectivity idelu
calculating external faces of a data set or allgorit which

utilize the set of cells adjacent to a point. Natery

interface reconstruction technique is inherentlpatde of

generating correct connectivity.

For example, a standard PLIC algorithm generates an
interface in each cell independently of its neigisband the
intersection point between adjacent cells will mattch up.
This means that generating a closed surface without
duplicate geometry is impossible without a complex
algorithm which can split the reconstructed geoynetany
extra times. See Figure 6 for an example. Intm@gcthis
is a major liability for using PLIC style reconsttion for
the many analysis algorithms requiring a well-defin
surface. However, for the purpose of the fairestiymsis of
PLIC algorithms, we implemented a duplicate surface
geometry removal algorithm, which allows us take
measurements based on the ideal surface theoketical
achievable with PLIC-style reconstruction.

TRIA!
NN NN

@ ® (@© (@

Figure 6: (@) Volumetric reconstruction with PLIC style
algorithms. (b) A surface-only PLIC reconstructilmaves
holes. (c) Generating the surface from a volumgetri
reconstruction leaves duplicate geometry. (d) THest
result has sharp angles and requires additionalemge to
generate. Although duplicate partial surface realofi.e.
(d)) is not a standard part of PLIC reconstructipnse
implemented it for the comparisons in this paper.

The Discrete algorithm quantizes space into sulelox
As such, good connectivity is somewhat straightfovin
that the edges or faces between sub-voxels wifleroh§
materials define the interface, but the connegtigitlimited
to only axis-aligned geometry (like a rectilinearidy,
imitating some weaknesses of a SLIC algorithm.

A standard isosurface based approach that creatgs o
lines in two dimensions and surfaces in three dsiters
cannot be used for much analysis other than gengrat
images; to perform analysis on the reconstructesliltre
requires a more complex volumetric algorithm. Alikk a
normal isosurface algorithm, this type of recondinn can
easily generate good connectivity between adjacehis.
However, a standard isovolume algorithm requires mass
for each material, creating volumes at the 50%leset.
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This is not conducive to generating connectivitywaen
the materials occupying a single cell, since eaelterial’'s
geometry is generated in isolation. In a two-niaterase
this could be remedied, as the 50% levels happenatch
up, but in general this is not possible — see thdtim
material support section (4.3) below for more dstai

As described in Section 3, our algorithm sharesesom
similarities with an isovolume algorithm in thatjacent
cells will naturally share intersection points. Wver, our
approach also solves the inter-material connegtivit
problem: it does not use a fixed value, but instéefihes a
single point of intersection between each pair afarals.
By recursing through the materials in a pairwisaleation,

algorithm successfully reconstructs the thin shedlying it
smoothly connected through the entire 360°.

4.4 Smoothness and physical realism

As previously mentioned, the material interfacelem
is under-constrained. A reconstruction algorithnirée to
choose any surface within the cell as long asflitcts the
volume fractions. From a visualization standpoitite
choice of surface within a cell is more than aestheif a
jagged edge or lumpy surface is used when a smexgh
or flat surface would have met the requirementsoisen by
the volume fractions, then the reconstruction atgor has

this results in even the many-material case having introduced artifacts and assumed information wihiichnot

inherently correct connectivity across cells andemals.

4.3 Multi-material support

@

(d) (e) (®)
Figure 7: Thin-shell torus test data set. Close-up of
reconstruction using (a) PLIC (b) Discrete (c) Istyme
(d) Equi-T (e) Equi-Z (f) Equi-Z/i20.

In general, material-supporting simulation codesrafe
on many materials, and so correctly supporting iplelt
materials within a single cell is a key requiremédot
correctness in a reconstruction algorithm. Faikae take
the form of a total inability to handle more thawot
materials in one cell to a gross shape mischaiaatem.
To explore this capability, we use the “Torus” dat.
This is a three-material data set, where an ininelecf the
first material is surrounded by a thin toroidal Ished a
second material, in turn surrounded by a third netas
background. This is also useful for studying tlgoathms
under low-volume fraction conditions. For examglgure
7 shows a close-up from the results of this data
reconstructed by each algorithm. The PLIC algarithust
reconstruct cells working from the outside-in, whimeans
it can potentially get the material ordering ineatrin cases
with three or more materials; this has occurredsame
cells, breaking any chance at a complete shelk Oiscrete
algorithm tends to group pieces of materials togeth
resulting here in uneven thickness. The Isovolume
approach misses the thin material entirely, leaxanole
due to its lack of three-material support. Withdatation,
our new algorithm misses the thin material as velt,does
not leave a hole. When several iterations are chdder

se
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exist in the data. These artifacts can be disimgct
physically unrealistic, or even misleading. Thirs,the
absence of extra information, smooth or straighfases
are desirable, as they introduce the least newrrirdtion.
Though it does manifest in some analysis calcuiatiguch
as surface area, which we explore in Section & ,form
of realism is hard to quantify. However, it can be
subjectively apparent. For example, in Figure ,7{fle
ability of our new algorithm to correctly generaethin
shell, and particularly to do so with a smooth cmmus
interface, is a strong example of its realism andimal
introduction of artifacts compared to other alduris.

@) (b)

(c) (d)
Figure 8: Unstructured mesh ovoid reconstruction using
(a) PLIC (b) Isovolume (c) Equi-T (d) Equi-Z/i5.

Figure 8 explores these artifacts in three dimerssigith
a deformed ovoid material in an unstructured gridhe
Discrete algorithm does not function on unstrudugeds,
so we have not evaluated it here, but we noteathaingles
in this algorithm will be 90 degrees, the worst gibke.
Note again the sharp surface irregularities whengua
PLIC algorithm; these will be present on most nioret
problems. Isovolume is very smooth, but it achsetkas
with a loss in volume fraction accuracy. The resfilom
our new algorithm highlight the importance of tHipging
variant: when element types are limited to tetrahlecells,
it still exhibits surface artifacts (though les®minent than
PLIC). Allowed the full complement of primitive s, it
achieves results subjectively as artifact-freesagdlume as
well as a more accurate (slightly larger) volume.
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(©)

(d)

€Y (e

(b) ®)
Figure 9: (a) Unstructured dataset from ALE3D simulation
showing material velocities. (b) Close-up of zocegion
showing velocities. Reconstructions shown in zoegion
are (c) PLIC, (d) Isovolume, (e) Equi-Z, (f) Equi3D.

Figure 9 shows a hyper velocity impact of a largetiple
upon several layers of shielding from the ALE3D
unstructured grid simulation code [ALE3D], decomgubs
over 64 parallel computational domains. At this léime
step, the materials have become twisted and sa@tehder
high pressure, like turbulent fluids mixing. Inngds (c)
through (f) we see a close zoom of the highlightesgion to
examine fine scale details of the reconstructigor@thms.
Of course, the “correct” reconstruction is ill-defd,
although the PLIC algorithm is guaranteed to failllgf
represent each material in a given cell. Howetrer,PLIC
algorithm introduces many jagged edges, creatingrpsh
features not implied by the data. Further, the dtawe
algorithm creates large holes near the multi-maltenieas.
Our new algorithm produces very smooth resultsyughoit
can miss many small pieces of materials unlesatiter is
enabled.
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(e) (f)
Figure 10: “Rect3D” Regular grid data set of nested
spheres reconstructed with (a) PLIC (b) DiscreteHd (c)
Discrete/60sec, (d) Isovolume, (e) Equi-Z, (f) E4lib.

Figure 10 shows “Rect3D”, a three dimensional regul
grid data set comprising eight nested sphere nadgefour
of which are visible on the outside faces as showde
expect perfect circular boundaries on these fouteris
spheres where they intersect the planar faceseottibe.
The PLIC algorithm again shows discontinuities atl ¢
boundaries. The Discrete algorithm results contaidom
noise, even after long periods of iteration, asdéalism at
material boundaries is limited by the quantizatfantor.
Isovolume generates smooth results but has somermin
lighting artifacts near material boundaries dudtsopoor
inter-material connectivity. Our new algorithm (@vhnot
restricted to tetrahedral cells) generates smoesghlts and
cohesive external surfaces, both without and wétation.

4.5 Volume fraction accuracy

One metric is most often selected as foremost in
importance in interface reconstruction algorithntBeir
ability to consistently reproduce the input volufreections
as the correct volume in the output geometry fahezell.
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While this capability often comes at the cost dfess, the
degree to which the algorithms honor volume fraxids
nonetheless a useful metric, and so we examirerét h

For an initial study of volume fraction accuracy wtilize
a straightforward 2D “Linear” test data sequencéwa-
material data set where a single-slope continudusai
interface divides the entire problem, intersectimg central
cell of a small grid over a full range of slopeglamlume
fractions (35 data sets in total). The resultsradheés full
sequence of data are shown in Table 2. The Plg@righm
is obviously very strong, with error on the ordérsmgle-
precision floating point limits. The Discrete apach has
fixed error bounds depending on the chosen qudittiza
factor (15x15 here). As expected for a two makenixed
cell case, the Isovolume approach and our new ighgor
perform identically on this metric, with maximunrens of
2.3% and a median error of 0.13%. Even with omgp t
iterations, our new algorithm improves even moréhw
error dropping by about half, to a maximum of 1.8f@ a
median of 0.072%. When our algorithm is restricted
triangular output (with no iteration), it perforrise worst,
with much larger errors (1.3% median and 3.4% max),
showing the importance of the approach to clipping.

PLIC | Discrete Isovol | Equi-T | Equi-Z |Equi-Z/i2
Median 7.1e-1 2.4e-3| 1.3e-3 13e-?2 13ei3 7.2eid
Maximum| 1.6e-6| 4.3e-3| 2.3e-3 3.4e-2 23ei2 1.0e2

Table 2: Volume fraction reconstruction error in the
central cell of the "Linear" data set sequence.

@ (b) ©

@) (e) ®
Figure 11: Close zoom of a blue circle against a green
background material reconstructed usig) PLIC (b)
Discrete (c) Isovolume (d) Equi-T (e) Equi-Z (fukd/i10.

We also use a “Circle” data sequence to examine the

behavior on ensemble data with nonlinear boundariégs

is a two-material data set, where a unit circle oofe
material is overlaid on a background material. sTisi a
sequence of data sets of varying resolution, ranfiom a
10x10 to a 50x50 structured grid, and can be usedudy

the convergence properties of the algorithms under
increasing resolution. Figure 11 shows a closeiithe
reconstruction of this dataset for each algorithm.

As the data represents a unit circle, it has d &vta over
all cells of at any resolution. The area achieved by each
algorithm is shown in Figure 12. As expected, PlLsC
accurate with this metric, the Discrete algorithas Hixed
error bounds, and Isovolume and our new methodowtth
iteration perform similarly as this is a two-magdrcase.
Note thatall algorithms do exhibit asymptotic convergence
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to the correct volume fraction answer under indreps
resolution. The key feature to note here is thenpunced
effect our iteration scheme has on the volume ifsact
accuracy; errors on the ensemble are noticeablyoivepl

compared to what was achieved without iteration.

ml

Figure 12: Area of a unit circle material sampled onto a
grid as reconstructed by each algorithm for a semeeof

increasing resolutions. The correct answer at all
resolutions is .
4.5.1 Volume fraction convergence
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Figure 13: Relative error of material volume on the “50x50
Circle” test data set for various convergence paeaens in
the Equi-Zliterative algorithm.
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Figure 14 Maximumrelative error for any single cell in
the “Linear” test data sequence for various conwamge
parameters in the Equi-Z/iterative algorithm.



J.S. Meredith and H. Childsvisualization and Analysis-Oriented ReconstructdiMaterial Interfaces

In Figure 13 we investigate the convergence pragsedf
the Equi-Z algorithm under iteration on the Cirdizta set.
This test examines the summed error contributioses all
reconstructed cells. We see the combined relativer is
on the order of 18 and with iteration generally improves
by two orders of magnitude to 0 All damping factors
show similar total improvement here, with largemgéng
factors converging as quickly as one order of maiglei per
iteration. Figure 14 shows the results from singgd
reconstructions on the Linear data sequence. Tiessdts
show the maximum error for any linear interface
intersecting the cell of interest, generally cogveg to less
than 1%. Here we see a penalty for using a danfpictgr
that is too large: the 0.9 factor results in oatidins which
effectively negate the benefits of iteration.

4.6 Surface accuracy

As mentioned, honoring volume fractions is often
considered the paramount metric in interface rettoason
algorithms. However, preserving volume fractiongsioot
ensure a good reconstruction from an analysis petise.
The role of material interface reconstruction aiipons in
analysis informs examples: How closely does oureneilt
approximate a sphere? How compact is our material?
Where is its centroid? What is the moment of ia@rtAll
of these are dependent on a correct reconstructiche
shapeof the object. The surface area of our reconsttlic
geometry, directly or indirectly, plays a role irnet
calculation for each of these examples, and sotuayst
here to provide a quantitative basis for this ngetri

Figure 15: Perimeter of a unit circle material sampled onto
a grid as reconstructed by each algorithm for aisstre of
increasing resolutions. The correct answer at
resolutions is 2.

all

We use our “Circle” test again to explore this neetsince
it has well known properties, and we can examing th
nature of surface area accuracy while being coghiabthe
volume fraction accuracy. Being a unit circle,his a
known correct answer for surface area (perimet@Di as
well: 2 .
on this sequence of increasing resolution data Séts first
result, the unmodified PLIC algorithm, is off thieact — this
is due to the connectivity problem discussed irised!.2,
where adjacent cells do not have correct connégtivi
leading to duplicate geometry and a meaningless
measurement of surface area. We applied an digoiid
remove the duplicate portions of this geometrydieg to
values which PLIC could theoretically achieve andeal
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case, yet the results are still much higher thandbrrect
answer. This is due to interface mismatches at cel
boundaries, resulting in a jagged surface wherellsma
discontinuities add up over the whole perimetertloé
circle. (Figure 11(a) shows this phenomenon usingPn
this data set.) Furthermore, the result doesppear to be
converging to the correct answer at higher resmhsti even
with a “perfect” choice of interface orientationpra cells
can simply lead to more wobbles, even if the woblaee
smaller.

The Discrete algorithm has a similar problem; nteiface
is defined by small axis-aligned stair-stepped §egments,
and thus is at a disadvantage in this metric, gdimgy a
surface perimeter far too large, also off the chart

The other algorithms, due in part to their inherent
connectivity, perform better. Our new algorithnyee
without iteration, shows asymptotic convergencethe
correct answer, but only the Equi-Z variant. Imtrast,
Equi-T, by being restricted to triangular primits/e
introduces small wobbles of its own, though they kass
pronounced than PLIC. When iteration is added, maw
algorithm outperforms all others at every resolutio

Figure 16 shows this from a different perspective b
quantifying the surface roughness on this Circldada
sequence. We know the sum of the exterior angles o
closed polygon is 2 however, a rougher surface will have
more negative angles where it is concave. As #te bleing
reconstructed represents a convex shape (i.e.taiucle),
we expect no negative angles in a smooth recongtnic
By summing theabsolute valueof these angles, we can
measure surface roughness as the amount by whish th
summation is greater than .2 Note that Equi-Z and
Isovolume achieve close to or exactly, 2vhile Equi-T and
PLIC are significantly higher (note the logarithngcale),
indicating a surface with more jagged and unduipéidges.
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Figure 16: Sum of absolute value of exterior angles in
Circle boundary at increasing resolutions. A canve
polygon has value 2 each jagged edge results in a
negative angle, in turn resulting in an increasathiis sum.

Figure 15 shows the surface area measurements

4.7 Memory complexity

Complex output geometry has consequences, from the
extra runtime in later analysis, to memory usagé lbaring
and after reconstruction, to memory imbalances kvician
affect scaling in a parallel setting. Here we noeaghis
output geometry complexity directly.
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PLIC | PLIC . . o

(orig) | (ideal) Isovol | Equi-T | Equi-Z | Equi-Z/i5
Polygons| 2116 | 2116 | 2421 2245 2267 2114
Lines 592 383 332 429 350 367

Table 3: Average number of 2D polygons and lines created
in each domain for material 3 in the 2D ALE3D da#.

Table 3 shows the amount of geometry created duhieg
reconstruction on the 2D ALE3D data set. We sebedy
one material in order to enable fair comparisonth whe
PLIC and Isovolume algorithms, which cannot gereerat
good connectivity between materials and would otiss
be many times higher. By using this method we aie
that the PLIC algorithm does generate a slightlweo
number of cells due to its use of arbitrary polygdout the
number of lines lying along the interface surface i
generally larger, even after applying a post-preicesfilter
to remove duplicate geometry. The extra subdivisibthe
Equi-T algorithm, due to its restriction to triarguoutput
shapes, increases its number of surface lines lekoui-
Z, and the Isovolume algorithm is lowest at thet cofs
inaccurate volume fractions in its reconstruction.

PLIC| PLIC |Discrete Discrete Isovol Equi-|Equi-| Equi-
(orig)|(ideal)| 10sec| 60sec T Z | ZIli5
Cells 13k [13k |1,029k| 1,029k | 38k | 67K 64k 64K
Faceg75k |65k |373k | 265k 20k | 44k| 22K 23k

Table 4: Number of volumetric cells and surface faces
created for material 3 in the 3D Rect3D data seatteNthe
cells for PLIC are complex arbitrary polyhedra.

Table 4 shows the 3D equivalent of the same inftiona
for the Rect3D data set, again selecting only oaternal to
enable fair comparisons for poor-connectivity aigns.
The fixed subdivision in the Discrete approach eauan
explosion in the number of output cells and surface
geometry. We see PLIC has a benefit in terms afrwetric
cells due to its use of arbitrary polyhedra, bug tfoes not
mean the geometry is strictly simpler; this cannsieethe
number of surface faces being significantly largem any
algorithm but Discrete, even with duplicate geometr
removed. We see again that Isovolume performs wetly
on this metric, particularly in terms of number fates.
Our new algorithm performs nearly as well, thoughete
that the Equi-Z variants, both with and withoutétton, are
improved over Equi-T, as the latter results in @xtr
subdivision from its use of only tetrahedral eletsen

4.8 Reconstruction performance
PLIC Isovol Equi-T Equi-Z Equi-Z/i5
37.26 ms 67.57 mg 0.73 mg 1.39 ms 18.27|ms
Table 5: Median reconstruction runtime per domain on the
2D ALE3D simulation data set. The Discrete aldurit
was not tested as it only operates on structureshee

We test performance using the two largest test setst
the “Rect3D” nested spheres 3D regular grid, ared 2D
unstructured data set from an ALE3D simulationhbwith
eight total materials. See Section 4.4 for imagesmore a
detailed description of these data sets. Thesdtsesere
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generated on a 2.5GHz Intel Harpertown system 8@iB
RAM and GCC 4.2 with —O2 optimization.

In Table 5 we see the time taken during the recoaton
phase on the 2D ALE3D data set for each algorithm
supporting unstructured grids. Note that Isovolum¢he
slowest, as it requires multiple passes to suppmahy
materials. The variants of our new algorithm e fastest,
though we note that the Equi-T version, being iesil to
triangular shapes, is simpler and faster. Thesaldtional
cost associated with each iteration pass, but ewitn
iteration the absolute runtime of our algorithmsidl a
significant improvement compared to the alternative

Discrets . . Equi-
PLIC 10sec Isovol | Equi-T| Equi-Z 2i5
Volumetric d 3
reconstruction 7319 995s| 2089 0.16)s 0.13s 098s
Surface 6.029 2.39s| 0093 0.16/s 0.12s 0.1B8s
lextraction
Table 6: Runtime on Rect3D for both full 3D

reconstruction and extraction of surface geometry.

Table 6 shows the runtime on the Rect3D data/Again,
even with multiple iterations, our new algorithm tise
fastest for reconstruction. Note that the tetratle@D
Equi-T variant is more complex than its trianguld
equivalent, and also generates more cells, sowersee a
benefit by using the Equi-Z variant. Also, notatthwe
measured the performance for the Discrete algoritluithn
its dial-an-accuracy approach, at ten seconds,ewivié
noted in Figure 10 that even with a sixty secordation
time there were still visible artifacts. The sedaww in
Table 6 shows the time to extract the surface géyme
This depends on the complexity and number of outplis,
and so this measure can be indicative of performdac
other geometric visualization and analysis tasksugg
after reconstruction. For this metric, the largenber of
cells in the Discrete algorithm and the complexfythe
arbitrary polyhedra generated in the PLIC algorithne
major reasons for their reduced performance. Thahgh
Isovolume approach is faster in this extractionggh&qui-
T and Equi-Z are close behind. The combined
reconstruction time is thus significantly faster our
proposed algorithm.

5 Conclusions and Future Work

In this paper, we present a new approach to méteria
interface reconstruction which improves upon emgsti
methods in several ways. First and foremost, st ¢@rect
connectivity and supports multiple materials — tdees
which are critical for analysis and visualizatiorWhile
making no guarantees for reconstructed accuragglume
fraction, we have described an iteration techniginéch
largely addresses this problem. Additionally, vantend
that volume accuracy is only one of several acgurac
metrics critical for analysis; when measuring scefarea,
for instance, other algorithms have severe accuracy
weaknesses in comparison with our technique. Amally,
our method has good performance on real data dats w
exhibiting good subjective realism and aesthetjcall
pleasing reconstructions due to its inherent smush and
material placement. Combined, this evaluation shivat
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our approach to material interface reconstructimikes a [HSS*97] Heck, H.C., SEEBASS M., STALLING, D. &
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